DIRECTORATE SENIOR CURRICULUM MANAGEMENT (SEN-FET) ## GRADE 12 LIFE SCIENCES HOME SCHOOLING SELF-STUDY WORKSHEET 5 ANSWER SHEET | | LIFE SCIENCES | GRADE | 12 | DATE | 14/04/2020 | |---------|-------------------|----------|----|---------|------------| | SUBJECT | | | | | | | | PEDIGREE DIAGRAMS | TERM 1 | | TERM 2 | ✓ | | TOPIC | | REVISION | | CONTENT | | | 1.1 | 1.1.1 | B√√ | (2) | |-----|-------|---|-------------------| | | 1.1.2 | C√√ | (2)
(4) | | 2.1 | 2.1.1 | 100%√ | (1) | | | 2.1.2 | Non-haemophiliac female ✓ / normal female | (1) | | | 2.1.3 | (a) X ^h Y✓ | (1) | | | | (b) X ^H X ^h √√ | (2)
(5) | 2.2 2.2.1 (a) $X^{A}Y \checkmark \checkmark$ (2) (b) $X^A X^a \checkmark \checkmark$ 2.2.2 $3/7 \times 100 = 42.8 \times /42.9/43\%$ (2) - 2.2.3 An affected female carries two/only recessive alleles √/X^aX^a - Sons/males inherit one X chromosome√ from their mothers - Sons/males need only one recessive allele to be affected√ - and therefore must inherit $X^{\boldsymbol{a}}$ from their mother \checkmark Any 3 (3) **(9)** 2.3 2.3.1 (a) Colour blind malec√ /male with Daltonism (1) (b) $X^{D}X^{d}\checkmark$ - 2.3.2 Linda inherited one recessive allele/X^d from her father√ (2) - and one recessive allele/X^d from her mother ✓ - 2.3.3 Males only have one X-chromosome✓ - If this chromosome carries the recessive allele √ /X^d - the male will be colour blind√ - Females have 2 X-chromosomes√ - -They need to have two recessive alleles √/X^d X^d to be affected A dominant allele on the other X-chromosome will mask the effect √ (4) Any 4 Phenotype Normal female Normal male ✓ P₁ X_DX_q Genotype X^DY ✓ Х Meiosis G/gametes X^D , X^d X^D.Y√ Fertilisation Genotype F₁ > Normal females, Phenotype Normal male. Colour blind male. P₁ and F₁√ Meiosis and fertilisation√ ## OR Phenotype P₁ Normal female Normal male √ Χ $X^{D}X^{d}$ X^DY ✓ Genotype Χ Meiosis Fertilisation | Gametes | Χ ^D | Υ | |---------|----------------|------------------| | ΧD | X_DX_D | X ^D Y | | Xq | X_DX_q | Χ ^d Y | 1 mark for correct gametes√ 1 mark for correct genotypes√* F₁ Phenotype Normal females, Normal male, Colour blind male P_1 and (6) F₁✓ (14) Meiosis and fertilisation√ | 2.4 2.4.1 | | (a) Suffers from Huntington's ✓ chorea | (1) | |-----------|-------|--|-----| | | | (b) (b) hh√ | (1) | | | 2.4.2 | hh√ | (1) | | | 2.4.3 | Emma's genotype is Hh √/heterozygous The father's genotype has to be hh√/homozygous recessive | | - a cross between only these two genotypes / /(Hh and hh) will ensure that there is 50% chance of the child not inheriting the disease (3)**(6)** [38]